

1
s

Keywords

acceptancetesting,black-boxtesting,componentintegrationtesting,componenttesting,confirmation testing,
functional testing, integration testing, maintenance testing, non-functional testing, regression testing,shift-
left,systemintegrationtesting,systemtesting,testlevel, testobject,testtype, white-box testing

LearningObjectivesforChapter 2:

2.1 TestingintheContextof aSoftwareDevelopment Lifecycle

FL-2.1.1 (K2) Explain the impact of the chosen software development lifecycle on testing

FL-2.1.2 (K1)Recallgoodtestingpracticesthatapplytoallsoftwaredevelopment lifecycles FL-

2.1.3 (K1) Recall the examples of test-first approaches to development

FL-2.1.4 (K2)SummarizehowDevOpsmighthaveanimpactontesting FL-

2.1.5 (K2) Explain the shift-left approach

FL-2.1.6 (K2)Explainhowretrospectivescanbeusedasamechanismforprocessimprovement

2.2 TestLevelsandTestTypes

FL-2.2.1 (K2)Distinguishthedifferenttestlevels

FL-2.2.2 (K2)Distinguishthedifferenttesttypes

FL-2.2.3 (K2)Distinguishconfirmationtestingfromregressiontesting

2.3 MaintenanceTesting

FL-2.3.1 (K2)Summarizemaintenancetestinganditstriggers

2. TestingThroughouttheSoftwareDevelopmentLifecycle –
130 minutes

2
s

A software development lifecycle (SDLC) model is an abstract, high-level representation of the software
development process. A SDLC model defines how different development phases and types of activities
performedwithinthisprocess relate toeachother,bothlogicallyandchronologically.ExamplesofSDLC models
include: sequential development models (e.g., waterfall model, V-model), iterative development models
(e.g., spiral model, prototyping), and incremental development models (e.g., Unified Process).

Someactivitieswithinsoftwaredevelopmentprocessescanalsobedescribed bymoredetailedsoftware
development methods and Agile practices. Examples include: acceptance test-driven development
(ATDD),behavior-driven development(BDD),domain-drivendesign (DDD),extremeprogramming (XP),
feature-driven development (FDD), Kanban, Lean IT, Scrum, and test-driven development (TDD).

2.1.1. ImpactoftheSoftwareDevelopmentLifecycleonTesting

Testingmustbeadaptedtothe SDLCtosucceed.ThechoiceoftheSDLCimpactson the:

• Scopeandtimingoftest activities(e.g.,testlevelsandtesttypes)

• Levelofdetailoftestdocumentation

• Choiceoftesttechniquesandtest approach

• Extentoftestautomation

• Roleandresponsibilitiesofa tester

In sequential development models, in the initial phases testers typically participate in requirement
reviews,test analysis,andtest design.Theexecutablecodeisusuallycreatedinthelaterphases,so typically
dynamic testing cannot be performed early in the SDLC.

In some iterative and incremental development models, it is assumed that each iteration delivers a
workingprototypeor productincrement.Thisimpliesthat ineachiteration bothstaticanddynamictesting maybe
performedatalltestlevels. Frequent delivery ofincrementsrequires fastfeedback and extensive regression
testing.

Agile software development assumes that change may occur throughout the project. Therefore,
lightweightworkproductdocumentationandextensivetestautomationtomakeregressiontestingeasier are
favored in agile projects. Also, most of the manual testing tends to be done using experience-based test
techniques (see Section 4.4) that do not require extensive prior test analysis and design.

2.1.2. SoftwareDevelopmentLifecycleandGoodTestingPractices

Goodtestingpractices,independentofthechosenSDLCmodel,includethefollowing:

• Foreverysoftwaredevelopmentactivity,thereisacorrespondingtestactivity, sothatall
development activities are subject to quality control

• Differenttestlevels (seechapter2.2.1)havespecific anddifferenttestobjectives,whichallows for
testing to be appropriately comprehensive while avoiding redundancy

2.1. TestingintheContextofaSoftwareDevelopmentLifecycle

3
s

• Test analysis and design for a given test level begins during the corresponding development
phaseof theSDLC,so that testingcanadheretotheprincipleofearlytesting(see section 1.3)

4
s

• Testers are involved in reviewing work products as soon as drafts of this documentation are
available,so thatthisearliertestinganddefectdetection cansupporttheshift-leftstrategy (see
section 2.1.5)

2.1.3. TestingasaDriverforSoftware Development

TDD, ATDD and BDD are similar development approaches, where tests are defined as a means of
directingdevelopment.Eachoftheseapproachesimplementstheprincipleofearlytesting(seesection 1.3) and
follows a shift-left approach (see section 2.1.5), since the tests are defined before the code is
written.Theysupport aniterative development model.Theseapproachesarecharacterizedasfollows:

Test-DrivenDevelopment(TDD):

• Directsthecodingthroughtestcases(insteadofextensivesoftwaredesign)(Beck2003)

• Testsarewrittenfirst, thenthecodeiswrittentosatisfythetests,andthenthe testsandcodeare refactored

AcceptanceTest-DrivenDevelopment(ATDD)(seesection4.5.3):

• Derivestestsfromacceptancecriteriaas partofthesystemdesignprocess (Gärtner2011)

• Testsarewrittenbeforethepartof theapplication isdevelopedtosatisfythetests

Behavior-Driven Development (BDD):

• Expressesthe desiredbehaviorofan applicationwithtest caseswritteninasimpleformof
natural language, which is easy to understand by stakeholders – usually using the
Given/When/Then format. (Chelimsky 2010)

• Testcasesarethenautomaticallytranslatedintoexecutabletests

Foralltheaboveapproaches,testsmay persist asautomatedtests toensure thecodequalityinfuture adaptions
/ refactoring.

2.1.4. DevOpsand Testing

DevOps is an organizational approach aiming to create synergy by getting development (including

testing)andoperationstoworktogethertoachieveasetofcommongoals.DevOps requiresacultural

shiftwithinan organization tobridgethegapsbetweendevelopment (includingtesting)andoperations while

treating their functions with equal value. DevOps promotes team autonomy, fast feedback, integrated

toolchains, and technical practices like continuous integration (CI) and continuous delivery (CD). This

enables the teams to build, test and release high-quality code faster through a DevOps delivery

pipeline (Kim 2016).

Fromthetestingperspective,someofthebenefitsofDevOps are:

• Fastfeedbackonthecodequality,andwhetherchangesadverselyaffectexistingcode

• CIpromotesashift-leftapproachintesting(seesection2.1.5)by encouragingdevelopers to

submit high quality code accompanied by component tests and static analysis

5
s

• PromotesautomatedprocesseslikeCI/CDthatfacilitateestablishingstabletestenvironments

• Increasestheviewonnon-functionalqualitycharacteristics(e.g.,performance,reliability)

6
s

• Automationthroughadeliverypipelinereducestheneedforrepetitivemanualtesting

• Theriskinregressionis minimizedduetothescaleandrangeof automatedregressiontests

DevOps is not without its risks and challenges, which include:

• TheDevOpsdeliverypipelinemustbedefinedandestablished

• CI/CDtoolsmustbeintroducedandmaintained

• Testautomationrequiresadditionalresourcesandmaybedifficulttoestablishandmaintain

AlthoughDevOpscomes withahighlevel ofautomatedtesting,manualtesting – especiallyfromthe user's
perspective – will still be needed.

2.1.5. Shift-LeftApproach

The principle of early testing (see section 1.3) is sometimes referred to as shift-left because it is an
approachwheretestingisperformed earlierinthe SDLC. Shift-leftnormallysuggeststhattestingshould be
done earlier (e.g., not waiting for code to be implemented or for components to be integrated), but it does
not mean that testing later in the SDLC should be neglected.

Therearesome goodpracticesthat illustratehowtoachievea“shift-left”intesting,whichinclude:

• Reviewingthespecificationfromtheperspectiveoftesting.Thesereviewactivitieson
specifications often find potential defects, such as ambiguities, incompleteness, and
inconsistencies

• Writingtestcasesbeforethecodeiswrittenandhave the coderunina testharness duringcode
implementation

• UsingCIand evenbetter CDasitcomeswithfastfeedbackandautomatedcomponentteststo
accompany source code when it is submitted to the code repository

• Completingstaticanalysisofsourcecodepriortodynamictesting,oraspart ofan automated
process

• Performing non-functional testing starting at the component test level, where possible. This is a
formof shift-leftasthesenon-functional testtypestendto beperformedlaterintheSDLCwhen a
complete system and a representative test environment are available

Ashift-leftapproachmightresultinextratraining, effortand/orcostsearlierintheprocessbutisexpected to save
efforts and/or costs later in the process.

Fortheshift-leftapproachitisimportantthatstakeholders areconvinced andbought intothis concept.

2.1.6. RetrospectivesandProcessImprovement

Retrospectives (also known as “post-project meetings” and project retrospectives) are often held at the
end of a project or an iteration, at a release milestone, or can be held when needed. The timing and
organization of the retrospectives depend on the particular SDLC model being followed. In these

7
s

meetings theparticipants(notonlytesters, butalsoe.g.,developers,architects,productowner,business
analysts) discuss:

• Whatwassuccessful,andshouldberetained?

8
s

2.2. TestLevelsandTestTypes

• Whatwasnotsuccessful andcouldbeimproved?

• Howtoincorporatetheimprovementsandretainthesuccessesinthefuture?

Theresultsshouldbe recorded and are normallypartofthetestcompletionreport (seesection5.3.2).
Retrospectives are critical for the successful implementation of continuous improvement and it is
important that any recommended improvements are followed up.

Typicalbenefitsfortestinginclude:

• Increasedtesteffectiveness/efficiency(e.g.,byimplementingsuggestionsforprocess
improvement)

• Increasedqualityoftestware(e.g.,byjointlyreviewingthetestprocesses)

• Teambondingandlearning(e.g., asaresultof theopportunitytoraiseissues andpropose
improvement points)

• Improvedqualityofthetest basis(e.g.,as deficiencies in theextentandquality ofthe
requirements could be addressed and solved)

• Bettercooperationbetweendevelopmentandtesting (e.g.,ascollaborationisreviewedand
optimized regularly)

Testlevels aregroupsoftestactivitiesthatareorganized andmanagedtogether.Eachtestlevelisan instance of
the test process, performed in relation to software at a given stage of development, from individual
components to complete systems or, where applicable, systems of systems.

Testlevels are relatedtoother activitieswithintheSDLC. InsequentialSDLCmodels,thetestlevelsare
oftendefinedsuchthatthe exitcriteriaof onelevelarepartoftheentrycriteriaforthe nextlevel.Insome iterative
models, this may not apply. Development activities may span through multiple test levels. Test levels may
overlap in time.

Testtypesaregroupsoftestactivities relatedtospecific qualitycharacteristics and mostof thosetest activities
can be performed at every test level.

2.2.1. TestLevels

Inthissyllabus, thefollowingfivetestlevelsaredescribed:

• Componenttesting(alsoknownasunittesting)focusesontestingcomponentsinisolation.It often

requires specific support, such as test harnesses or unit test frameworks. Component testing

is normally performed by developers in their development environments.

• Componentintegrationtesting (alsoknownasunitintegration testing)focusesontestingthe

interfaces and interactions between components. Component integration testing is heavily

dependent on the integration strategy approaches like bottom-up, top-down or big-bang.

9
s

• Systemtestingfocuses ontheoverallbehaviorandcapabilitiesofan entiresystem orproduct, often

including functional testing of end-to-end tasks and the non-functional testing of quality

characteristics.Forsomenon-functional qualitycharacteristics,itispreferable totestthemon a

completesystemin arepresentative testenvironment (e.g.,usability). Usingsimulationsofsub-

10
s

systemsisalso possible.Systemtestingmay beperformedbyan independenttest team,andis related

to specifications for the system.

• Systemintegrationtesting focuses ontestingtheinterfacesofthesystemundertest andother

systems and external services . System integration testing requires suitable test environments

preferably similar to the operational environment.

• Acceptance testing focuses on validation and on demonstrating readiness for deployment,

whichmeans thatthesystemfulfillstheuser’sbusiness needs.Ideally,acceptancetestingshould be

performed by the intended users. The main forms of acceptance testing are: user acceptance

testing (UAT), operational acceptance testing, contractual and regulatory acceptance testing,

alpha testing and beta testing.

Testlevels aredistinguishedbythefollowingnon-exhaustivelistofattributes, toavoidoverlappingoftest
activities:

• Testobject

• Testobjectives

• Testbasis

• Defectsandfailures

• Approachandresponsibilities

2.2.2. TestTypes

Alotoftesttypesexist andcanbe appliedinprojects.In thissyllabus,thefollowing four testtypesare addressed:

Functionaltesting evaluatesthefunctionsthatacomponentorsystemshouldperform.Thefunctions
are“what”thetest object should do. Themain objective offunctional testing is checking thefunctional
completeness, functional correctness and functional appropriateness.

Non-functional testing evaluates attributes other than functional characteristics of a component or
system.Non-functionaltestingisthetesting of“howwellthesystembehaves”. The mainobjectiveof non-
functional testing is checking the non-functional software quality characteristics. The ISO/IEC 25010
standard provides the following classification of the non-functional software quality characteristics:

• Performanceefficiency

• Compatibility

• Usability

• Reliability

• Security

• Maintainability

• Portability

11
s

Itissometimesappropriatefornon-functionaltesting tostartearlyinthe lifecycle(e.g., aspartof reviews and
component testing or system testing). Many non-functional tests are derived from functional tests as

12
s

they use the same functional tests, but check that while performing the function, a non-functional
constraint issatisfied (e.g.,checkingthat afunctionperformswithinaspecifiedtime,orafunctioncanbe ported to
a new platform). The late discovery of non-functional defects can pose a serious threat to the successofa
project.Non-functionaltestingsometimesneedsaveryspecifictestenvironment,suchasa usability lab for
usability testing.

Black-boxtesting(seesection4.2)isspecification-basedandderivestestsfromdocumentationexternal to the
test object. The main objective of black-box testing is checking the system's behavior against its
specifications.

White-box testing (see section 4.3) is structure-based and derives tests from the system's
implementation or internal structure (e.g., code, architecture, work flows, and data flows). The main
objectiveofwhite-boxtestingistocovertheunderlying structure bytheteststothe acceptablelevel.

All the four above mentioned test types can be applied to all test levels, although the focus will be
differentateachlevel.Differenttesttechniquescan beusedtoderivetestconditionsandtestcases for all the
mentioned test types.

2.2.3. ConfirmationTestingandRegressionTesting

Changesaretypicallymadetoa component orsystemto eitherenhanceitbyadding anewfeatureorto fix it by
removing a defect. Testing should then also include confirmation testing and regression testing.

Confirmationtestingconfirms that anoriginaldefecthas beensuccessfullyfixed.Depending onthe risk, one

can test the fixed version of the software in several ways, including:

• executingalltestcasesthat previouslyhavefailedduetothedefect,or,also by

• addingnewteststocoveranychangesthatwereneededtofixthedefect

However, when time or money is short when fixing defects, confirmation testing might be restricted to
simplyexercisingthestepsthatshouldreproducethefailurecausedbythedefectandcheckingthatthe failure
does not occur.

Regressiontestingconfirms thatnoadverseconsequenceshavebeencausedbyachange, includinga fix that
has already been confirmation tested. These adverse consequences could affect the same component
where the change was made, other components in the same system, or even other connected systems.
Regression testing may not be restricted to the test object itself but can also be related tothe
environment. Itis advisable first to perform animpact analysis tooptimizethe extent ofthe regression
testing. Impact analysis shows which parts of the software could be affected.

Regression test suites are run many times and generally the number of regression test cases will
increase with each iteration or release, so regression testing is a strong candidate for automation.
Automation of these tests should start early in the project. Where CI is used, such as in DevOps (see
section2.1.4),itis good practicetoalsoinclude automatedregressiontests.Depending onthesituation, this
may include regression tests on different levels.

Confirmationtestingand/orregressiontestingforthetest objectareneeded onalltestlevelsifdefects are fixed

and/or changes are made on these test levels.

13
s

There are different categories of maintenance, it can be corrective, adaptive to changes in the
environmentorimproveperformanceormaintainability
(seeISO/IEC14764fordetails),somaintenance can involve planned releases/deployments and
unplanned releases/deployments (hot fixes). Impact analysismay bedonebefore achangeis
made, tohelpdecideifthe changeshouldbe made, basedon thepotential consequencesin
otherareasofthesystem. Testingthechangestoasysteminproduction includes bothevaluatingthe
success of theimplementationofthe change andthechecking forpossible regressions in parts of
the system that remain unchanged (which is usually most of the system).

Thescopeofmaintenancetestingtypicallydependson:

• Thedegreeofriskofthechange

• Thesize ofthe existingsystem

• Thesizeofthechange

Thetriggersformaintenance andmaintenancetestingcanbeclassifiedasfollows:

• Modifications,suchasplannedenhancements(i.e.,release-

based),correctivechangesorhot fixes.

• Upgrades or migrations of the operational environment, such as from one platform to

another, whichcanrequire testsassociated withthe newenvironmentaswellas

ofthechangedsoftware, or tests of data conversion when data from another application

is migrated into the system being maintained.

• Retirement,such aswhen anapplication reachestheend ofitslife.Whenasystemisretired,

this canrequiretestingofdataarchivingiflongdata-retention periods are required. Testing

ofrestore and retrieval procedures after archiving may also be needed in the event that

certain data is required during the archiving period.

2.3. MaintenanceTesting

