
1

[Type text]

5.ManagingtheTestActivities–335minutes

Keywords

defectmanagement,defectreport, entrycriteria,exitcriteria,product risk,projectrisk, risk,riskanalysis, risk 
assessment, risk control, risk identification, risk level, risk management, risk mitigation, risk monitoring, 
risk-based testing, test approach, test completion report, test control, test monitoring, test plan, test 
planning, test progress report, test pyramid, testing quadrants

LearningObjectivesforChapter5:

5.1 TestPlanning

FL-5.1.1 (K2)Exemplifythepurposeandcontentofatestplan

FL-5.1.2 (K1)Recognizehow atesteraddsvaluetoiterationandreleaseplanning FL-

5.1.3 (K2) Compare and contrast entry criteria and exit criteria

FL-5.1.4 (K3)Useestimationtechniquestocalculatetherequiredtesteffort FL-

5.1.5 (K3) Apply test case prioritization

FL-5.1.6 (K1)Recalltheconceptsofthetestpyramid

FL-5.1.7 (K2)Summarizethetestingquadrantsandtheirrelationshipswithtestlevelsandtesttypes

5.2 Risk Management

FL-5.2.1 (K1)Identifyrisklevel byusing risklikelihoodandriskimpact FL-

5.2.2 (K2) Distinguish between project risks and product risks

FL-5.2.3 (K2)Explainhow productrisk analysismayinfluencethoroughness andscopeoftesting FL-

5.2.4 (K2) Explain what measures can be taken in response to analyzed product risks

5.3 TestMonitoring,TestControlandTestCompletion

FL-5.3.1 (K1)Recallmetricsusedfortesting

FL-5.3.2 (K2)Summarizethepurposes, content,andaudiencesfortestreports FL-

5.3.3 (K2) Exemplify how to communicate the status of testing

5.4 ConfigurationManagement

FL-5.4.1 (K2)Summarizehowconfigurationmanagementsupportstesting

5.5 DefectManagement

FL-5.5.1 (K3)Prepareadefectreport



2

[Type text]

5.1. TestPlanning

5.1.1. PurposeandContentofaTestPlan

Atestplandescribestheobjectives,resourcesandprocessesfora testproject.Atestplan:

 Documentsthemeansandscheduleforachievingtestobjectives

 Helpstoensurethattheperformedtestactivitieswillmeettheestablishedcriteria

 Servesasameansofcommunicationwithteammembersandotherstakeholders

 Demonstratesthattestingwilladheretothe existingtest policy andteststrategy (orexplainswhy the 
testing will deviate from them)

Test planning guides the testers’ thinking and forces the testers to confront the future challenges related 
torisks,schedules,people, tools,costs,effort, etc. Theprocessofpreparinga testplanisausefulwayto think 
through the efforts needed to achieve the test project objectives.

Thetypicalcontentof atestplanincludes:

 Contextof testing(e.g.,scope,testobjectives,constraints,testbasis)

 Assumptionsandconstraintsofthetestproject

 Stakeholders(e.g.,roles,responsibilities,relevancetotesting,hiringandtrainingneeds)

 Communication(e.g.,formsandfrequencyofcommunication,documentationtemplates)

 Riskregister(e.g.,productrisks, projectrisks)

 Testapproach(e.g.,testlevels,testtypes, testtechniques,testdeliverables,entry criteriaand exit 
criteria, independence of testing, metrics to be collected, test data requirements, test 
environment requirements, deviations from the organizational test policy and test strategy)

 Budgetandschedule

MoredetailsaboutthetestplananditscontentcanbefoundintheISO/IEC/IEEE29119-3standard.

5.1.2. Tester'sContributiontoIterationandReleasePlanning

IniterativeSDLCs,typicallytwokindsofplanningoccur:releaseplanninganditerationplanning.

Release planning looks ahead to the release of a product, defines and re-defines the product backlog, 
and may involve refining larger user stories into a set of smaller user stories. It also serves as the basis 
forthe testapproachandtest planacrossalliterations.Testersinvolvedinrelease planningparticipatein writing 
testable user stories and acceptance criteria (see section 4.5), participate in project and quality risk 
analyses (see section 5.2), estimate test effort associated with user stories (see section 5.1.4), 
determine the test approach, and plan the testing for the release.

Iteration planning looks ahead to the end of a single iteration and is concerned with the iteration backlog. 
Testers involvedin iterationplanning participateinthedetailedrisk analysis ofuserstories, determinethe 
testabilityof userstories, break downuserstoriesintotasks(particularlytestingtasks), estimatetesteffort for all 
testing tasks, and identify and refine functional and non-functional aspects of the test object.



3

[Type text]

5.1.3. EntryCriteriaandExitCriteria

Entry criteria define the preconditions for undertaking a given activity. If entry criteria are not met, it is 
likelythatthe activitywillprovetobemoredifficult,time-consuming,costly,andriskier.Exitcriteriadefine what 
must be achieved in order to declare an activity completed. Entry criteria and exit criteria should be 
defined for each test level, and will differ based on the test objectives.

Typicalentrycriteriainclude:availabilityofresources(e.g.,people,tools, environments,test data, budget, 
time), availability of testware (e.g., test basis, testable requirements, user stories, test cases), and initial 
quality level of a test object (e.g., all smoke tests have passed).

Typical exit criteria include: measures of thoroughness (e.g., achieved level of coverage, number of 
unresolveddefects,defectdensity,numberoffailedtest cases),andcompletioncriteria (e.g.,planned tests 
have been executed, static testing has been performed, all defects found are reported, all regression 
tests are automated).

Running out of time or budget can also be viewed as valid exit criteria. Even without other exit criteria 
beingsatisfied,itcanbe acceptableto endtestingunder suchcircumstances,if thestakeholdershave 
reviewed and accepted the risk to go live without further testing.

In Agile software development, exit criteria are often called Definition of Done, defining the team’s 
objectivemetricsforareleasableitem.Entrycriteriathat auserstorymustfulfilltostartthedevelopment and/or 
testing activities are called Definition of Ready.

5.1.4. Estimation Techniques

Testeffortestimation involvespredictingthe amountof test-relatedwork neededto meet theobjectivesof 
atestproject.It isimportant tomakeitcleartothestakeholdersthatthe estimateisbasedon anumberof 
assumptionsand isalwayssubjecttoestimationerror.Estimationforsmall tasksisusuallymoreaccurate than 
for the large ones. Therefore, when estimating a large task, it can be decomposed into a set of smaller 
tasks which then in turn can be estimated.

Inthissyllabus,thefollowingfourestimationtechniquesaredescribed.

Estimationbasedonratios.Inthis metrics-basedtechnique,figuresarecollectedfromprevious projects within
the organization, which makes it possible to derive “standard” ratios for similar projects. The ratios of an 
organization’s own projects (e.g., taken from historical data) are generally the best source to use in the 
estimation process. These standard ratios can then be used to estimate the test effort for the new project.
For example, if in the previous project the development-to-test effort ratio was 3:2, and in the current 
project the developmenteffortis expected tobe 600person-days, thetest effort canbeestimated to be 400 
person-days.

Extrapolation. In this metrics-based technique, measurements are made as early as possible in the 
current projecttogatherthe data. Havingenoughobservations,theeffortrequiredforthe remainingwork 
canbeapproximatedbyextrapolatingthisdata (usuallybyapplyinga mathematicalmodel). Thismethod is very 
suitable in iterative SDLCs. For example, the team may extrapolate the test effort in the forthcoming 
iteration as the averaged effort from the last three iterations.

WidebandDelphi.Inthis iterative,expert-basedtechnique,expertsmakeexperience-basedestimations. 
Eachexpert,inisolation,estimatestheeffort. The results arecollectedand iftherearedeviationsthatare out of 
range of the agreed upon boundaries, the experts discuss their current estimates. Each expert is 
thenaskedto makea newestimation based onthatfeedback,againinisolation.Thisprocessisrepeated until a 
consensus is reached. Planning Poker is a variant of Wideband Delphi, commonly used in Agile



4

[Type text]

softwaredevelopment.InPlanningPoker,estimatesareusuallymadeusingcardswithnumbersthat represent
the effort size.

Three-point estimation. In this expert-based technique, three estimations are made by the experts: the 
mostoptimisticestimation(a),themostlikelyestimation(m)and the mostpessimisticestimation (b). The final 
estimate (E) is their weighted arithmetic mean. In the most popular version of this technique, the 
estimate is calculated as E = (a + 4*m + b) / 6. The advantage of this technique is that it allows the 
experts to calculate the measurement error: SD = (b – a) / 6. For example, if the estimates (in person- 
hours) are: a=6, m=9 and b=18, then the final estimation is 10±2 person-hours (i.e., between 8 and 12 
person-hours), because E = (6 + 4*9 + 18) / 6 = 10 and SD = (18 – 6) / 6 = 2.

See(Kan2003,Koomen2006,Westfall2009)fortheseandmanyothertestestimationtechniques.

5.1.5. TestCase Prioritization

Oncethe testcasesand testprocedures arespecifiedandassembledinto testsuites,thesetestsuites can be
arranged in a test execution schedule that defines the order in which they are to be run. When 
prioritizing test cases, different factors can be taken into account. The most commonly used test case 
prioritization strategies are as follows:

 Risk-basedprioritization,wheretheorderoftest executionisbased ontheresultsof riskanalysis (see 
section 5.2.3). Test cases covering the most important risks are executed first.

 Coverage-based prioritization, where the order of test execution is based on coverage (e.g., 
statement coverage). Test cases achieving the highest coverage are executed first. In another 
variant,calledadditionalcoverageprioritization,thetestcaseachievingthe highest coverageis 
executed first; each subsequent test case is the one that achieves the highest additional 
coverage.

 Requirements-based prioritization, where the order of test execution is based on the priorities of 
therequirementstracedbacktothecorrespondingtest cases.Requirement prioritiesaredefined by 
stakeholders. Test cases related to the most important requirements are executed first.

Ideally, test cases would be ordered to run based on their priority levels, using, for example, one of the 
above-mentioned prioritization strategies. However, this practice may not work if the test cases or the 
featuresbeingtestedhave dependencies.Ifa testcasewithahigherpriorityisdependent onatestcase with a 
lower priority, the lower priority test case must be executed first.

Theorder oftest executionmustalsotakeinto accounttheavailabilityof resources. Forexample,the 
requiredtest tools,testenvironmentsorpeoplethatmayonlybeavailableforaspecifictimewindow.

5.1.6. TestPyramid

The test pyramid is a model showing that different tests may have different granularity. The test pyramid 
modelsupports theteamin testautomationandintesteffortallocationbyshowingthatdifferentgoals are 
supportedby differentlevels oftest automation. Thepyramidlayers represent groupsoftests. Thehigher the 
layer, the lower the test granularity, test isolation and test execution time. Tests in the bottom layer are 
small, isolated, fast, and check a small piece of functionality, so usually a lot of them are needed to 
achieve a reasonable coverage. The top layer represents complex, high-level, end-to-end tests. These 
high-level tests are generally slower than the tests from the lower layers, and they typically check a large 
piece of functionality, so usually just a few of them are needed to achieve a reasonable coverage. The 
number and naming of the layers may differ. For example, the original test pyramid model (Cohn 2009) 



5

[Type text]

defines three layers: “unit tests”, “service tests” and “UI tests”. Another popular model defines unit



6

[Type text]

(component)tests,integration (componentintegration)tests,andend-to-endtests. Othertestlevels(see 
section 2.2.1) can also be used.

5.1.7. Testing Quadrants

Thetestingquadrants,definedbyBrianMarick (Marick 2003,Crispin 2008),groupthetestlevelswiththe 
appropriate test types, activities, test techniques and work products in the Agile software development.
The model supports test management in visualizing these to ensure that all appropriate test types and 
test levels are included in the SDLC and in understanding that some test types are more relevant to 
certaintestlevelsthanothers. This modelalsoprovidesa waytodifferentiateanddescribethetypes of tests to 
all stakeholders, including developers, testers, and business representatives.

In this model, tests can be business facing or technology facing. Tests can also support the team (i.e., 
guidethedevelopment)orcritiquetheproduct(i.e.,measureitsbehavior againstthe expectations). The 
combination of these two viewpoints determines the four quadrants:

 Quadrant Q1 (technology facing, support the team). This quadrant contains component and 
componentintegrationtests.Thesetests shouldbeautomatedandincludedintheCI process.

 Quadrant Q2 (business facing, support the team). This quadrant contains functional tests, 
examples,userstorytests,userexperienceprototypes, APItesting,andsimulations.Thesetests check
the acceptance criteria and can be manual or automated.

 QuadrantQ3(businessfacing,critiquetheproduct).Thisquadrantcontainsexploratorytesting, 
usability testing, user acceptance testing. These tests are user-oriented and often manual.

 QuadrantQ4 (technologyfacing,critiquetheproduct).Thisquadrantcontainssmoketestsand non-
functional tests (except usability tests). These tests are often automated.

5.2. RiskManagement

Organizationsfacemany internalandexternalfactorsthatmakeit uncertainwhetherandwhentheywill achieve 
their objectives (ISO 31000). Risk management allows the organizations to increase the likelihood of 
achieving objectives, improve the quality of their products and increase the stakeholders’ confidence and
trust.

Themainriskmanagementactivities are:

 Riskanalysis(consistingof riskidentificationandriskassessment;seesection5.2.3)

 Riskcontrol(consisting ofriskmitigationandriskmonitoring;seesection5.2.4)

Thetestapproach,inwhichtestactivities areselected, prioritized,andmanagedbasedon riskanalysis and risk 
control, is called risk-based testing.

5.2.1. RiskDefinition andRiskAttributes

Riskisapotentialevent,hazard,threat,orsituationwhoseoccurrencecausesanadverseeffect.Arisk can be 
characterized by two factors:

 Risklikelihood–theprobabilityoftheriskoccurrence(greaterthanzeroandlessthan one)

 Riskimpact(harm)–theconsequencesofthisoccurrence



7

[Type text]

Thesetwofactorsexpresstherisklevel, whichisa measureforthe risk.Thehighertherisklevel,the more 
important is its treatment.

5.2.2. ProjectRisksandProductRisks

Insoftwaretestingone isgenerallyconcernedwithtwo typesofrisks: projectrisksandproductrisks.

Projectrisksarerelated tothemanagement andcontrol oftheproject.Projectrisksinclude:

 Organizationalissues(e.g.,delaysinworkproductsdeliveries,inaccurateestimates,cost-cutting)

 Peopleissues(e.g.,insufficientskills,conflicts,communicationproblems,shortageofstaff)

 Technicalissues(e.g.,scopecreep,poortoolsupport)

 Supplierissues (e.g.,third-partydeliveryfailure,bankruptcyofthesupportingcompany)

Projectrisks,whenthey occur, mayhaveanimpact ontheproject schedule,budget orscope,which affects 
the project's ability to achieve its objectives.

Product risks are related to the product quality characteristics (e.g., described in the ISO 25010 quality 
model). Examples of product risks include: missing or wrong functionality, incorrect calculations, runtime 
errors,poorarchitecture,inefficientalgorithms,inadequateresponsetime,pooruserexperience,security 
vulnerabilities. Product risks, when they occur, may result in various negative consequences, including:

 Userdissatisfaction

 Lossofrevenue,trust,reputation

 Damagetothirdparties

 Highmaintenancecosts,overloadofthehelpdesk

 Criminalpenalties

 Inextremecases,physical damage,injuriesoreven death

5.2.3. ProductRiskAnalysis

Fromatestingperspective,thegoalof productrisk analysisistoprovideanawarenessof productriskin order
tofocusthe testing effortinaway that minimizestheresidual level of productrisk.Ideally, product risk
analysis begins early in the SDLC.

Product risk analysis consists of risk identification and risk assessment. Risk identification is about 
generatinga comprehensivelistof risks.Stakeholderscanidentify risksbyusingvarioustechniques and tools, 
e.g., brainstorming, workshops, interviews, or cause-effect diagrams. Risk assessment involves: 
categorization of identified risks, determining their risk likelihood, risk impact and level, prioritizing, and 
proposing ways to handle them. Categorization helps in assigning mitigation actions, because usually 
risks falling into the same category can be mitigated using a similar approach.

Riskassessmentcanuseaquantitativeorqualitative approach, oramixofthem.Inthe quantitative approach the
risk level is calculated as the multiplication of risk likelihood and risk impact. In the qualitative approach 
the risk level can be determined using a risk matrix.



8

[Type text]

Productrisk analysismayinfluencethethoroughnessandscopeoftesting.Itsresultsareusedto:



9

[Type text]

 Determinethescopeoftestingtobecarriedout

 Determinetheparticulartest levelsandpropose testtypestobeperformed

 Determinethetesttechniquestobe employedandthecoveragetobe achieved

 Estimatethe testeffort requiredforeachtask

 Prioritizetestinginan attemptto findthecritical defectsasearlyaspossible

 Determinewhetheranyactivitiesinadditiontotestingcouldbeemployed toreducerisk

5.2.4. ProductRiskControl

Productriskcontrolcomprisesallmeasuresthat are takeninresponsetoidentifiedandassessedproduct risks. 
Product risk control consists of risk mitigation and risk monitoring. Risk mitigation involves 
implementingtheactions proposedinriskassessment to reduce therisklevel.Theaim ofrisk monitoring is to 
ensure that the mitigation actions are effective, to obtain further information to improve risk assessment, 
and to identify emerging risks.

Withrespect toproduct riskcontrol,onceariskhasbeen analyzed,several responseoptionstoriskare
possible,e.g.,risk mitigation bytesting, risk acceptance,risktransfer, or contingencyplan(Veenendaal
2012). Actions that can be taken to mitigate the product risks by testing are as follows:

 Selectthetesterswith therightlevelofexperienceandskills,suitableforagivenrisktype

 Applyanappropriatelevelofindependenceoftesting

 Conductreviewsandperformstaticanalysis

 Applytheappropriatetesttechniquesandcoveragelevels

 Applytheappropriatetesttypesaddressing theaffectedqualitycharacteristics

 Performdynamictesting,includingregressiontesting

5.3. TestMonitoring,Test ControlandTest Completion

Test monitoring is concerned with gathering information about testing. This information is used to assess 
testprogress andtomeasurewhetherthe testexitcriteria orthe testtasks associatedwiththe exitcriteria are 
satisfied, such as meeting the targets for coverage of product risks, requirements, or acceptance criteria.

Testcontrolusestheinformation from testmonitoringto provide,in aformofthecontrol directives, guidance 
and the necessary corrective actions to achieve the most effective and efficient testing. Examples of 
control directives include:

 Reprioritizingtestswhenanidentifiedriskbecomes anissue

 Re-evaluatingwhetheratestitemmeetsentrycriteriaorexitcriteriaduetorework

 Adjustingthetestscheduletoaddressadelayin thedeliveryofthetestenvironment

 Addingnewresourceswhenandwhere needed



10

[Type text]

Test completion collects data from completed test activities to consolidate experience, testware, and any 
other relevantinformation.Testcompletion activitiesoccuratprojectmilestonessuchaswhena testlevel is 
completed,an agileiterationis finished, atest projectis completed(orcancelled), a softwaresystemis 
released, or a maintenance release is completed.

5.3.1. MetricsusedinTesting

Testmetricsaregatheredtoshowprogress againstthe plannedschedule and budget,thecurrent quality of the 
test object, and the effectiveness of the test activities with respect to the objectives or an iteration goal. 
Test monitoring gathers a variety of metrics to support the test control and test completion.

Commontestmetricsinclude:

 Projectprogressmetrics(e.g.,taskcompletion,resourceusage,testeffort)

 Testprogressmetrics(e.g.,testcaseimplementationprogress,testenvironmentpreparation 
progress, number of test cases run/not run, passed/failed, test execution time)

 Productqualitymetrics(e.g.,availability,responsetime,meantimetofailure)

 Defectmetrics(e.g.,numberandprioritiesofdefects found/fixed,defectdensity,defectdetection 
percentage)

 Riskmetrics(e.g.,residual risklevel)

 Coveragemetrics(e.g.,requirementscoverage,codecoverage)

 Costmetrics (e.g.,costoftesting,organizationalcostofquality)

5.3.2. Purpose,ContentandAudienceforTestReports

Test reporting summarizes and communicates test information during and after testing. Test progress 
reports support the ongoing control of the testing and must provide enough information to make 
modifications to the test schedule, resources, or test plan, when such changes are needed due to 
deviationfromtheplanorchangedcircumstances.Testcompletion reportssummarizeaspecificstageof testing 
(e.g., test level, test cycle, iteration) and can give information for subsequent testing.

Duringtest monitoring andcontrol, thetestteamgeneratestestprogress reportsforstakeholderstokeep them 
informed. Test progress reports are usually generated on a regular basis (e.g., daily, weekly, etc.) and 
include:

 Testperiod

 Testprogress(e.g.,aheadorbehindschedule),includinganynotabledeviations

 Impedimentsfortesting,andtheirworkarounds

 Testmetrics(seesection5.3.1for examples)

 Newandchangedriskswithintestingperiod

 Testingplannedforthenextperiod



11

[Type text]

A test completion report is prepared during test completion, when a project, test level, or test type is 
complete andwhen,ideally,itsexitcriteria havebeen met.Thisreportusestestprogress reportsand other 
data. Typical test completion reports include:

 Testsummary

 Testingandproductqualityevaluationbasedon theoriginaltestplan(i.e.,testobjectives andexit criteria)

 Deviationsfromthetestplan(e.g.,differencesfromtheplannedschedule,duration,andeffort).

 Testingimpedimentsandworkarounds

 Testmetricsbasedon testprogressreports

 Unmitigatedrisks,defectsnotfixed

 Lessonslearnedthatarerelevanttothetesting

Different audiencesrequire differentinformationinthereports,andinfluencethe degree offormalityand the 
frequency of reporting. Reporting on test progress to others in the same team is often frequent and 
informal, while reporting on testing for a completed project follows a set template and occurs only once.

TheISO/IEC/IEEE29119-3standardincludestemplates andexamplesfortest progress reports(called test 
status reports) and test completion reports.

5.3.3. CommunicatingtheStatusofTesting

The best means of communicating test status varies, depending on test management concerns, 
organizationalteststrategies,regulatorystandards,or,inthecaseofself-organizingteams(seesection 1.5.2), on
the team itself. The options include:

 Verbalcommunicationwithteammembersandotherstakeholders

 Dashboards(e.g.,CI/CDdashboards,taskboards,andburn-downcharts)

 Electroniccommunicationchannels(e.g.,email,chat)

 Onlinedocumentation

 Formaltestreports(seesection 5.3.2)

One or more of these options can be used. More formal communication may be more appropriate for 
distributedteamswheredirectface-to-facecommunicationisnotalways possible duetogeographical 
distance or time differences. Typically, different stakeholders are interested in different types of 
information, so communication should be tailored accordingly.

5.4. ConfigurationManagement

In testing, configuration management (CM) provides a discipline for identifying, controlling, and tracking 
workproductssuchastestplans, teststrategies,testconditions,testcases,testscripts, testresults,test logs, and
test reports as configuration items.



12

[Type text]

For a complex configuration item (e.g., a test environment), CM records the items it consists of, their 
relationships,andversions.Iftheconfigurationitemisapproved fortesting,it becomesabaseline and can only 
be changed through a formal change control process.

Configurationmanagementkeeps arecordofchangedconfigurationitems whenanewbaselineis created. It is 
possible to revert to a previous baseline to reproduce previous test results.

Toproperlysupporttesting,CMensuresthefollowing:

 All configuration items, including test items (individual parts of the test object), are uniquely 
identified,versioncontrolled,trackedforchanges, andrelatedtootherconfigurationitems sothat 
traceability can be maintained throughout the test process

 Allidentifieddocumentation andsoftwareitemsarereferencedunambiguouslyintest 
documentation

Continuous integration, continuous delivery, continuous deployment and the associated testing are 
typicallyimplemented aspartof anautomatedDevOps pipeline(seesection2.1.4),inwhichautomated CM is 
normally included.

5.5.DefectManagement

Since one of the major test objectives is to find defects, an established defect management process is 
essential. Although we refer to "defects" here, the reported anomalies may turn out to be real defects or 
something else (e.g., false positive, change request) - this is resolved during the process of dealing with 
the defect reports. Anomalies may be reported during any phase of the SDLC and the form depends on 
the SDLC. At a minimum, the defect management process includes a workflow for handling individual 
anomalies from their discovery to their closure and rules for their classification. The workflow typically 
comprises activities to log the reported anomalies, analyze and classify them, decide on a suitable 
response such as to fix or keep it as it is and finally to close the defect report. The process must be 
followedbyallinvolvedstakeholders.It isadvisabletohandledefectsfromstatic testing (especiallystatic 
analysis) in a similar way.

Typicaldefectreports havethefollowingobjectives:

 Providethoseresponsibleforhandlingandresolvingreporteddefectswithsufficientinformation to 
resolve the issue

 Provideameansoftrackingthequalityofthe workproduct

 Provideideasforimprovement ofthedevelopmentandtestprocess A 

defect report logged during dynamic testing typically includes:

 Uniqueidentifier

 Titlewithashortsummaryoftheanomalybeingreported

 Datewhentheanomalywasobserved,issuingorganization,and author,includingtheirrole

 Identificationofthetest objectandtestenvironment

 Contextof thedefect (e.g., testcasebeingrun,test activitybeingperformed,SDLCphase,and other 
relevant information such as the test technique, checklist or test data being used)



13

[Type text]

 Descriptionofthefailure toenablereproductionand resolutionincludingthe 
stepsthatdetected the anomaly, and any relevant test logs, database dumps, 
screenshots, or recordings

 Expectedresultsandactualresults

 Severityofthedefect(degreeofimpact)ontheinterestsofstakeholdersorrequirements

 Prioritytofix

 Statusofthedefect(e.g.,open, deferred, duplicate,waitingtobefixed, 
awaitingconfirmation testing, re-opened, closed, rejected)

 References(e.g.,tothetestcase)

Some of this data may be automatically included when using defect management tools (e.g., 
identifier, date,author andinitialstatus).Document templatesforadefectreportand 
exampledefectreports canbe found in the ISO/IEC/IEEE 29119-3 standard, which refers to 
defect reports as incident reports.




