
  

 

Module 3: Boolean values, Conditional execution, Loops, Lists and List 

processing, Logical and Bitwise operators 

 

3.3 Logic and bit operators in Python .............................................................................. 1 

3.3.1 Computer logic .................................................................................................... 2 

3.3.2 Logical expressions .............................................................................................. 3 

3.3.3 Logical values vs. single bits ................................................................................ 4 

3.3.4 Bitwise operators ................................................................................................ 4 

3.3.5 How do we deal with single bits? ........................................................................ 7 

3.3.6 Binary left shift and binary right shift .................................................................. 9 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

3.3 Logic and bit operators in Python 

 

3.3.1 Computer logic 
Have you noticed that the conditions we've used so far have been very simple, not to say, quite primitive? 

The conditions we use in real life are much more complex. Let's look at this sentence: 

If we have some free time, and the weather is good, we will go for a walk. 

We've used the conjunction and, which means that going for a walk depends on the simultaneous fulfilment 

of these two conditions. In the language of logic, such a connection of conditions is called a conjunction. And 

now another example: 

If you are in the mall or I am in the mall, one of us will buy a gift for Mom. 

The appearance of the word or means that the purchase depends on at least one of these conditions. In 

logic, such a compound is called a disjunction. 

It's clear that Python must have operators to build conjunctions and disjunctions. Without them, the 

expressive power of the language would be substantially weakened. They're called logical operators. 

The and operator 

One logical conjunction operator in Python is the word and. It's a binary operator with a priority that is 

lower than the one expressed by the comparison operators. It allows us to code complex conditions without 

the use of parentheses like this one: 

counter > 0 and value == 100 

The result provided by the and operator can be determined on the basis of the truth table. 

If we consider the conjunction of A and B, the set of possible values of arguments and corresponding values 

of the conjunction looks as follows: 

 

Argument A Argument B A and B 

False False False 

False True False 

True False False 

True True True 

 

The or operator 

A disjunction operator is the word or. It's a binary operator with a lower priority than and (just 

like + compared to *). Its truth table is as follows: 

 



  

 

Argument A Argument B A or B 

False False False 

False True True 

True False True 

True True True 

 

The not operator 

In addition, there's another operator that can be applied to the construction of conditions. It's a unary 

operator performing a logical negation. Its operation is simple: it turns truth into falsehood and falsehood 

into truth. 

This operator is written as the word not, and its priority is very high: the same as the unary + and -. Its truth 

table is simple: 

 

Argument not Argument 

False True 

True False 

 

3.3.2 Logical expressions 
Let's create a variable named var and assign 1 to it. The following conditions are pairwise equivalent:9 

# Example 1: 

print(var > 0) 

print(not (var <= 0)) 

  

# Example 2: 

print(var != 0) 

print(not (var == 0)) 

You may be familiar with De Morgan's laws. They say that: 

The negation of a conjunction is the disjunction of the negations. 

The negation of a disjunction is the conjunction of the negations. 



  

 
Let's write the same thing using Python: 

not (p and q) == (not p) or (not q) 

not (p or q) == (not p) and (not q) 

  

Note how the parentheses have been used to code the expressions ‒ we put them there to improve 

readability. 

We should add that none of these two-argument operators can be used in the abbreviated form known 

as op=. This exception is worth remembering. 

3.3.3 Logical values vs. single bits 
Logical operators take their arguments as a whole regardless of how many bits they contain. The operators 

are aware only of the value: zero (when all the bits are reset) means False; not zero (when at least one bit is 

set) means True. 

The result of their operations is one of these values: False or True. This means that this snippet will assign the 

value True to the j variable if i is not zero; otherwise, it will be False. 

i = 1 

j = not not i 

  

3.3.4 Bitwise operators 
 

However, there are four operators that allow you to manipulate single bits of data. They are called bitwise 

operators. 

They cover all the operations we mentioned before in the logical context, and one additional operator. This is 

the xor (as in exclusive or) operator, and is denoted as ^ (caret). 

Here are all of them: 

• & (ampersand) ‒ bitwise conjunction; 

• | (bar) ‒ bitwise disjunction; 

• ~ (tilde) ‒ bitwise negation; 

• ^ (caret) ‒ bitwise exclusive or (xor). 

 

 

 

 

 

 



  

 
 

Bitwise operations (&, |, and ^) 

Argument A Argument B A & B A | B A ^ B 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 

1 1 1 1 0 

 

Bitwise operations (~) 

Argument ~ Argument 

0 1 

1 0 

 

 

Let's make it easier: 

• & requires exactly two 1s to provide 1 as the result; 

• | requires at least one 1 to provide 1 as the result; 

• ^ requires exactly one 1 to provide 1 as the result. 

Let us add an important remark: the arguments of these operators must be integers; we must not use floats 

here. 

The difference in the operation of the logical and bit operators is important: the logical operators do not 

penetrate into the bit level of its argument. They're only interested in the final integer value. 

Bitwise operators are stricter: they deal with every bit separately. If we assume that the integer variable 

occupies 64 bits (which is common in modern computer systems), you can imagine the bitwise operation as a 

64-fold evaluation of the logical operator for each pair of bits of the arguments. This analogy is obviously 

imperfect, as in the real world all these 64 operations are performed at the same time (simultaneously). 

Logical vs. bit operations 

We'll now show you an example of the difference in operation between the logic and bit operations. Let's 

assume that the following assignments have been performed: 

i = 15 



  

 
j = 22 

  

If we assume that the integers are stored with 32 bits, the bitwise image of the two variables will be as 

follows: 

i: 00000000000000000000000000001111 

j: 00000000000000000000000000010110 

The assignment is given: 

log = i and j 

  

We are dealing with a logical conjunction here. Let's trace the course of the calculations. Both 

variables i and j are not zeros, so will be deemed to represent True. Consulting the truth table for 

the and operator, we can see that the result will be True. No other operations are performed. 

log: True 

Now the bitwise operation ‒ here it is: 

bit = i & j 

  

The & operator will operate with each pair of corresponding bits separately, producing the values of the 

relevant bits of the result. Therefore, the result will be as follows: 

I 00000000000000000000000000001111 

J 00000000000000000000000000010110 

bit = i & j 00000000000000000000000000000110 

These bits correspond to the integer value of six. 

Let's look at the negation operators now. First the logical one: 

logneg = not i 

  

The logneg variable will be set to False ‒ nothing more needs to be done. 

The bitwise negation goes like this: 

bitneg = ~i 

  

It may be a bit surprising: the bitneg variable value is -16. This may seem strange, but isn't at all. If you wish 

to learn more, you should check out the binary numeral system and the rules governing two's complement 

numbers. 



  

 

I 00000000000000000000000000001111 

bitneg = ~i 11111111111111111111111111110000 

 

 

Each of these two-argument operators can be used in abbreviated form. These are the examples of their 

equivalent notations: 

x = x & y x &= y 

x = x | y x |= y 

x = x ^ y x ^= y 

 

3.3.5 How do we deal with single bits? 
We'll now show you what you can use bitwise operators for. Imagine that you're a developer obliged to write 

an important piece of an operating system. You've been told that you're allowed to use a variable assigned in 

the following way: 

flag_register = 0x1234 

  

The variable stores the information about various aspects of system operation. Each bit of the variable 

stores one yes/no value. You've also been told that only one of these bits is yours ‒ the third (remember 

that bits are numbered from zero, and bit number zero is the lowest one, while the highest is number 31). 

The remaining bits are not allowed to change, because they're intended to store other data. Here's your bit 

marked with the letter x: 

flag_register = 0000000000000000000000000000x000 

  

You may be faced with the following tasks: 

1. Check the state of your bit ‒ you want to find out the value of your bit; comparing the whole variable to 

zero will not do anything, because the remaining bits can have completely unpredictable values, but you can 

use the following conjunction property: 

x & 1 = x 

x & 0 = 0 

  

If you apply the & operation to the flag_register variable along with the following bit image: 

00000000000000000000000000001000 



  

 
(note the 1 at your bit's position) as the result, you obtain one of the following bit strings: 

• 00000000000000000000000000001000 if your bit was set to 1 

• 00000000000000000000000000000000 if your bit was reset to 0 

Such a sequence of zeros and ones, whose task is to grab the value or to change the selected bits, is called 

a bit mask. 

Let's build a bit mask to detect the state of your bit. It should point to the third bit. That bit has the weight 

of 23 = 8. A suitable mask could be created by the following declaration: 

the_mask = 8 

  

You can also make a sequence of instructions depending on the state of your bit. Here it is: 

if flag_register & the_mask: 

    # My bit is set. 

else: 

    # My bit is reset. 

  

2. Reset your bit ‒ you assign a zero to the bit while all the other bits must remain unchanged; let's use the 

same property of the conjunction as before, but let's use a slightly different mask ‒ exactly as below: 

11111111111111111111111111110111 

  

Note that the mask was created as a result of the negation of all the bits of the_mask variable. Resetting the 

bit is simple, and looks like this (choose the one you like more): 

flag_register = flag_register & ~the_mask 

flag_register &= ~the_mask 

  

3. Set your bit ‒ you assign a 1 to your bit, while all the remaining bits must remain unchanged; use the 

following disjunction property: 

x | 1 = 1 

x | 0 = x 

  

You're now ready to set your bit with one of the following instructions: 

flag_register = flag_register | the_mask 

flag_register |= the_mask 

  



  

 
4. Negate your bit ‒ you replace a 1 with a 0 and a 0 with a 1. You can use an interesting property of 

the xor operator: 

x ^ 1 = ~x 

x ^ 0 = x 

  

and negate your bit with the following instructions: 

flag_register = flag_register ^ the_mask 

flag_register ^= the_mask 

  

3.3.6 Binary left shift and binary right shift 
 

Python offers yet another operation relating to single bits: shifting. This is applied only to integer values, and 

you mustn't use floats as arguments for it. 

You already apply this operation very often and quite unconsciously. How do you multiply any number by 

ten? Take a look: 

12345 × 10 = 123450 

As you can see, multiplying by ten is in fact a shift of all the digits to the left and filling the resulting gap with 

zero. 

Division by ten? Take a look: 

12340 ÷ 10 = 1234 

Dividing by ten is nothing but shifting the digits to the right. 

The same kind of operation is performed by the computer, but with one difference: as two is the base for 

binary numbers (not 10), shifting a value one bit to the left thus corresponds to multiplying it by two; 

respectively, shifting one bit to the right is like dividing by two (notice that the rightmost bit is lost). 

The shift operators in Python are a pair of digraphs: << and >>, clearly suggesting in which direction the shift 

will act. 

value << bits 

value >> bits 

  

The left argument of these operators is an integer value whose bits are shifted. The right argument 

determines the size of the shift. 

It shows that this operation is certainly not commutative. 

The priority of these operators is very high. You'll see them in the updated table of priorities, which we'll 

show you at the end of this section. 

Take a look at the shifts in the editor window. 



  

 
var = 17 

var_right = var >> 1 

var_left = var << 2 

print(var, var_left, var_right) 

 

The final print() invocation produces the following output: 

17 68 8 

Note: 

• 17 >> 1 → 17 // 2 (17 floor-divided by 2 to the power of 1) → 8 (shifting to the right by one bit is the 

same as integer division by two) 

• 17 << 2 → 17 * 4 (17 multiplied by 2 to the power of 2) → 68 (shifting to the left by two bits is the 

same as integer multiplication by four) 

And here is the updated priority table, containing all the operators introduced so far: 

Priority Operator  

1 ~, +, - unary 

2 ** 
 

3 *, /, //, % 
 

4 +, - binary 

5 <<, >> 
 

6 <, <=, >, >= 
 

7 ==, != 
 

8 & 
 

9 | 
 

10 =, +=, -=, *=, /=, %=, &=, ^=, |=, >>=, <<= 
 

  

 


